AI搜索累計解答了位高考生的升學(xué)問題

咨詢時間:8:00~24:00 400-618-8866

您的位置: 首頁> 考培資訊> 托福> 閱讀> 托福閱讀——指代題(十七)

托福閱讀——指代題(十七)

關(guān)鍵字  托福閱讀;托福閱讀真題;托福閱讀指南
2015-10-27 來源:新通外語網(wǎng)igo99.cn 作者:新通教育 閱讀量: 手機(jī)閱讀

導(dǎo)讀

新通托福高分素材庫出爐啦!眾所周知,托福閱讀一直是中國考生的薄弱項,新通教育為幫助廣大托福考生突破閱讀瓶頸,提高閱讀成績,特地精心整理了托福閱讀高分分類素材庫。那快來托福閱讀高分素材庫汲取營養(yǎng)吧!

Biological Clocks

Survival and successful reproduction usually require the activities of animals to be coordinated with predictable events around them. Consequently, the timing and rhythms of biological functions must closely match periodic events like the solar day, the tides, the lunar cycle, and the seasons. The relations between animal activity and these periods, particularly for the daily rhythms, have been of such interest and importance that a huge amount of work has been done on them and the special research field of chronobiology has emerged. Normally, the constantly changing levels of an animal's activity—sleeping, feeding, moving, reproducing, metabolizing, and producing enzymes and hormones, for example—are well coordinated with environmental rhythms, but the key question is whether the animal's schedule is driven by external cues, such as sunrise or sunset, or is instead dependent somehow on internal timers that themselves generate the observed biological rhythms. Almost universally, biologists accept the idea that all eukaryotes (a category that includes most organisms except bacteria and certain algae) have internal clocks. By isolating organisms completely from external periodic cues, biologists learned that organisms have internal clocks. For instance, apparently normal daily periods of biological activity were maintained for about a week by the fungus Neurospora when it was intentionally isolated from all geophysical timing cues while orbiting in a space shuttle. The continuation of biological rhythms in an organism without external cues attests to its having an internal clock.

When crayfish are kept continuously in the dark, even for four to five months, their compound eyes continue to adjust on a daily schedule for daytime and nighttime vision. Horseshoe crabs kept in the dark continuously for a year were found to maintain a persistent rhythm of brain activity that similarly adapts their eyes on a daily schedule for bright or for weak light. Like almost all daily cycles of animals deprived of environmental cues, those measured for the horseshoe crabs in these conditions were not exactly 24 hours. Such a rhythm whose period is approximately—but not exactly—a day is called circadian. For different individual horseshoe crabs, the circadian period ranged from 22.2 to 25.5 hours. A particular animal typically maintains its own characteristic cycle duration with great precision for many days. Indeed, stability of the biological clock's period is one of its major features, even when the organism's environment is subjected to considerable changes in factors, such as temperature, that would be expected to affect biological activity strongly. Further evidence for persistent internal rhythms appears when the usual external cycles are shifted—either experimentally or by rapid east-west travel over great distances. Typically, the animal's daily internally generated cycle of activity continues without change. As a result, its activities are shifted relative to the external cycle of the new environment. The disorienting effects of this mismatch between external time cues and internal schedules may persist, like our jet lag, for several days or weeks until certain cues such as the daylight/darkness cycle reset the organism's clock to synchronize with the daily rhythm of the new environment.

Animals need natural periodic signals like sunrise to maintain a cycle whose period is precisely 24 hours. Such an external cue not only coordinates an animal's daily rhythms with particular features of the local solar day but also—because it normally does so day after day-seems to keep the internal clock's period close to that of Earth's rotation. Yet despite this synchronization of the period of the internal cycle, the animal's timer itself continues to have its own genetically built-in period close to, but different from, 24 hours. Without the external cue, the difference accumulates and so the internally regulated activities of the biological day drift continuously, like the tides, in relation to the solar day. This drift has been studied extensively in many animals and in biological activities ranging from the hatching of fruit fly eggs to wheel running by squirrels. Light has a predominating influence in setting the clock. Even   a fifteen-minute burst of light in otherwise sustained darkness can reset an animal's circadian rhythm. Normally, internal rhythms are kept in step by regular environmental cycles. For instance, if a homing pigeon is to navigate with its Sun compass, its clock must be properly set by cues provided by the daylight/darkness cycle.


Paragraph 3: Animals need natural periodic signals like sunrise to maintain a cycle whose period is precisely 24 hours. Such an external cue not only coordinates an animal's daily rhythms with particular features of the local solar day but also—because it normally does so day after day-seems to keep the internal clock's period close to that of Earth's rotation. Yet despite this synchronization of the period of the internal cycle, the animal's timer itself continues to have its own genetically built-in period close to, but different from, 24 hours. Without the external cue, the difference accumulates and so the internally regulated activities of the biological day drift continuously, like the tides, in relation to the solar day. This drift has been studied extensively in many animals and in biological activities ranging from the hatching of fruit fly eggs to wheel running by squirrels. Light has a predominating influence in setting the clock. Even a fifteen-minute burst of light in otherwise sustained darkness can reset an animal's circadian rhythm. Normally, internal rhythms are kept in step by regular environmental cycles. For instance, if a homing pigeon is to navigate with its Sun compass, its clock must be properly set by cues provided by the daylight/darkness cycle.

11. The word “it” in the passage refers to
○ an external cue such as sunrise
○ the daily rhythm of an animal
○ the local solar day
○ a cycle whose period is precisely 24 hours

查看正確答案和解析

  • 有疑問在線咨詢老師

    咨詢時間:0:00 ~ 24:00
    非咨詢時間也可留言

  • 400-618-8866

    咨詢時間:8:00 ~ 24:00

定制備考方案
留學(xué)快讀通道

課程推薦

更多課程+

新通為您定制更適合您的學(xué)習(xí)方案

想要獲取更多考試培訓(xùn)信息,可以通過以下方式聯(lián)系到距離您最近的新通教育;

1、撥打新通教育咨詢熱線:400-618-8866;

2、點(diǎn)擊【立即咨詢】 ,我們會有課程老師為你解答考試難題;

3、完成以下表單,輕松預(yù)約,預(yù)約獲取定制學(xué)習(xí)方案的機(jī)會。

姓名
聯(lián)系電話

城市
  • 杭州
  • 北京
  • 上海
  • 廣州
  • 深圳
  • 南京
  • 武漢
  • 蘇州
  • 太原
  • 濟(jì)南
  • 合肥
  • 天津
  • 鄭州
  • 長春
  • 寧波
  • 舟山
  • 溫州
  • 成都
  • 重慶
  • 西安
  • 南昌
  • 廈門
  • 福州
學(xué)習(xí)科目
  • 雅思
  • 托福
  • SAT
  • ACT
  • GRE
  • GMAT
  • 國際高中備考班
  • A-level
  • AP
馬上預(yù)約

定制學(xué)習(xí)方案

  • 雅思
  • 托福
  • SAT
  • ACT
  • GRE
  • GMAT
  • 國際高中備考班
  • A-level
  • AP
獲取你的學(xué)習(xí)方案

*溫馨提示:新通承諾絕不泄露您的個人信息

大家都在看

更多>

近期活動

  • 北京
  • 成都
  • 福州
  • 廣州
  • 杭州
  • 合肥
  • 濟(jì)南
  • 南昌
  • 南京
  • 寧波
  • 青島
  • 廈門
  • 上海
  • 深圳
  • 蘇州
  • 太原
  • 天津
  • 溫州
  • 武漢
  • 西安
  • 長春
  • 長沙
  • 鄭州
  • 重慶
  • 舟山